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Abstract. In this paper, we present the full Lagrangian of mesons (pseudoscalars, vectors and axial-vectors)
to O(p4) by using the explicit global chiral symmetry and hidden local symmetry in the chiral limit. In this
approach, we see that there are many other terms besides the usual eleven terms given in the literature
from a hidden local symmetry approach. In particular, there are some terms in our full results which are
important for understanding the vector meson dominance and π–π scattering and providing consistent
predictions on the decay rates of a1 → γπ and a1 → ρπ as well as for constructing a consistent effective chiral
Lagrangian with chiral perturbation theory. It is likely that the structures of the effective chiral Lagrangian
for O(p4) given in the literature by using hidden local symmetry are incomplete and consequently the
resulting couplings are not reliable. We examine the issue that the more general effective chiral Lagrangian
given in the present paper can provide more consistent predictions for the low energy phenomenology of the
ρ–a1 system and result in more consistent descriptions on the low energy behavior of light flavor mesons.

1 Introduction

The strong interaction is believed to be described by SU(3)
gauge theory. As an asymptotic free theory, it has successful
applications in the high energy region (i.e.,E > 1 GeV), but
in the low energy region (i.e., E < 1 GeV), one cannot make
ordinary perturbation calculations since, in this region, the
coupling constant becomes large. To describe the physics
of the strong interaction in the low energy region, one may
develop some effective theorieswhich reflect the symmetries
and symmetry breaking in this energy region. In this note,
we focus on the chiral effective Lagrangian theory.

The basic idea of chiral effective Lagrangian theory can
be described as follows: Compared with the scale where the
non-perturbative effects become important, the masses of
the lightest three flavor quarks (u, d and s) are smaller than
the QCD scale ΛQCD. When neglecting the masses of these
quarks, the QCD Lagrangian possesses an U(3)L × U(3)R
flavor chiral symmetry. The chiral effective theory was first
proposed byWeinberg in 1979 [1], where the effective theory
of two light flavor quarks (u and d) was built. Later on,
the effective theory of two (u and d) and three (u, d and s)
flavor cases was studied systematically up to O(p4) in [2].
Besides the normal parity section, there are anomalous
sections in the effective theory [3, 4].

In addition to the pseudoscalar mesons, there are also
vector and axial-vector mesons in the meson spectrum.
How to build an effective theory of vector and axial-vector
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mesons was discussed by many authors. In the literature,
many methods were used, such as the matter field
method [5], the massive Yang–Mills method [6, 7], the
anti-symmetric tensor field method [2, 8], the hidden lo-
cal symmetry method [9–11] and the QCD Green function
approach [12]. In general, one should also consider the light
scalar mesons which have been shown [13] to play an impor-
tant role for understanding the dynamically spontaneous
symmetry breaking of the chiral symmetry U(3)L ×U(3)R.
In particular, a chiral effective Lagrangian with scalars can
be derived from integrating out the quark and gluon fields
by using a new symmetry-preserving loop regularization
method [14], and the gap equations have been found to
result from minimal conditions of the effective potential
for the scalar fields. It then predicts the existence of σ and
κ scalars as the nonet scalar mesons which can be regarded
as composite Higgs bosons with a consistent mass spectra
to the current experimental data [13]. For simplicity, we
will not include the scalar mesons in this paper.

The hidden local symmetry method is based on a popu-
lar idea that the non-linear σ model based on the manifold
G/H is gauge equivalent to the σ model based on G×Hlocal
and the gauge bosons correspond to the local symmetry
can be regarded as composite bosons. In our present con-
sideration, we will use the extended hidden local symmetry
where G = U(3)L×U(3)R for the three light flavor (u, d and
s) case. This model is gauge equivalent to the non-linear σ
model based on the manifold G/H [10,15]. Of course, there
are maybe contributions to the coefficients of the non-linear
σ model from the Yang–Mills-type self-interaction of the
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hidden symmetry [16], but we will not consider this case in
this note. In the hidden local symmetry method, the vec-
tor and axial-vector mesons are treated as combinations
of the dynamical gauge bosons of hidden local symmetry
Glocal = Û(3)L × Û(3)R as suggested in [10]. But after a
careful check, we will see that there are many terms, in-
cluding three important terms to O(p4), which were missed
in the literature [10]. It is these three important terms that
can cancel the strong momentum dependence of the ρ–π–π
coupling fρππ and also it is these three terms that can en-
sure the ρ-meson dominance in a1 → γπ decay and result
in consistent predictions on the decay rates a1 → γπ and
a1 → ρπ. In particular, these new terms play an impor-
tant role for understanding the π–π scattering [2, 17, 18],
or more generally, the meson–meson scattering.

This paper is organized as follows. In Sect. 2, we will give
a simple but complete description of hidden local symmetry.
In Sect. 3, after listing the fourteen important terms of the
effective chiral Lagrangian, we choose a special gauge, i.e.,
unitary gauge, and explicitly present a gauged Lagrangian.
In Sect. 4, it is shown that with an appropriate gauge fixing
condition for the hidden local symmetry, fourteen param-
eters appearing in the more general effective Lagrangian
based on the explicit global chiral symmetry and hidden
local chiral symmetry can be uniquely extracted when com-
paring it with the effective Lagrangian of chiral perturba-
tion theory. The relevant low energy phenomenologies of
the ρ–a1 system, such as universality of the ρ-meson cou-
pling, vector meson dominance, the ρ–π–π coupling fρππ,
the KSFR relation m2

ρ = f2
ρππf2

π/2, etc., are discussed
in Sect. 5. Our conclusions and remarks are presented in
Sect. 6. The full Lagrangian up to O(p4) is presented in
the appendix.

2 Hidden local symmetry

In the chiral limit, the vector and axial-vector mesons can-
not be introduced as gauge bosons via gauging the above
global chiral symmetry Gglobal = U(3)L×U(3)R; otherwise
there exist, according to the Higgs mechanism, no inde-
pendent degrees of freedoms for the Goldstone-like pseu-
doscalar mesons. On the other hand, the chiral gauge boson
couplings to the light quarks must be invariant under the
transformation of the global chiral symmetry Gglobal as the
original QCD theory does. This then is motivation to intro-
duce ahidden local chiral symmetryGlocal = Û(3)L×Û(3)R
associated with the chiral gauge bosons ÂL and ÂR. After
the spontaneous breaking of the global chiral symmetry
Gglobal, the Goldstone-like pseudoscalar mesons are gen-
erated, and the chiral gauge bosons associated with the
hidden local gauge symmetry also turn out to be vector
and axial-vector mesons via an appropriate choice of the
gauge transformation of the hidden local symmetry Glocal.
Such a gauge choice breaks the hidden local chiral symme-
try and generates the masses of the vector and axial-vector
mesons. In this paper, we are limited to a consideration of
the case of the chiral limit and will not discuss the gauge
anomalous section.

Let us begin with introducing the necessary fields for
constructing the chiral Lagrangian which are covariant
under the global chiral symmetry Gglobal. The chiral La-
grangian is expected to describe the Goldstone-like pseu-
doscalar mesons, vector mesons and axial-vector mesons
which arise from the gauge bosons of the local chiral sym-
metry Glocal.

Corresponding to the global chiral symmetry Gglobal,
we introduce the local chiral symmetry Glocal. In this case,
we have the non-linear chiral fields ξ̂L(x) ∈ U(3)L × Û(3)L
and ξ̂R(x) ∈ U(3)R × Û(3)R, which transform as

ξ̂L(x) → gLξ̂L(x)G†
L(x),

gL ∈ U(3)L, GL ∈ Û(3)L, (1)

ξ̂R(x) → gRξ̂R(x)G†
R(x),

gR ∈ U(3)R, GR ∈ Û(3)R. (2)

We also have the non-linear chiral field ξM (x) ∈ Glocal;
its transformation property is

ξM (x) → GL(x)ξM (x)G†
R(x);

(GL(x), GR(x)) ∈ Û(3)L × Û(3)R. (3)

With the above non-linear chiral fields, we can construct
the non-linear field U(x) ∈ Gglobal as follows:

U(x) ≡ ξ̂L(x)ξM (x)ξ̂†
R(x), (4)

and its transformation property under the full group
Gglobal × Glocal is

U(x) → gLU(x)g†
R, (gL, gR) ∈ Gglobal. (5)

From the above, we can also see that the transformation
properties of gauge fields ÂL and ÂR corresponding to the
local chiral symmetry Glocal are

ÂL → Â′
L = GL(x)(ÂL + i∂)G†

L(x), (6)

ÂR → Â′
R = GR(x)(ÂR + i∂)G†

R(x). (7)

Similarly, we can construct the chiral gauge bosons

aL(x) = ξ̂L(x)(ÂL(x) + i∂)ξ̂†
L(x)

≡ ξ̂L(x)iDξ̂†
L(x), (8)

aR(x) = ξ̂R(x)(ÂR(x) + i∂)ξ̂,†R (x)

≡ ξ̂R(x)iDξ̂†
R(x); (9)

their transformation properties under the full chiral sym-
metry Gglobal × Glocal are

aL(x) → gLaL(x)g†
L, aR(x) → gRaR(x)g†

R. (10)

The field strengths corresponding to local chiral sym-
metry are

F̂µν
L = ∂µÂν

L − ∂νÂµ
L − i

[
Âµ

L, Âν
L

]
,
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F̂µν
R = ∂µÂν

R − ∂νÂµ
R − i

[
Âµ

R, Âν
R

]
; (11)

then, the field strengths of the chiral gauge bosons corre-
sponding to the global chiral symmetry are

Fµν
L = ∂µaν

L − ∂νaµ
L − i [aµ

L, aν
L] = ξ̂L(x)F̂µν

L ξ̂†
L(x),

Fµν
R = ∂µaν

R − ∂νaµ
R − i [aµ

R, aν
R] = ξ̂R(x)F̂µν

R ξ̂†
R(x). (12)

All the above field strengths are covariant:

Fµν
L → gLFµν

L g†
L, Fµν

R → gRFµν
R g†

R

F̂µν
L → GLF̂µν

L G†
L, F̂µν

R → GRF̂µν
R G†

R. (13)

Similarly, we can also construct gauge fields as follows:

−âL(x) ≡ ξM (x)iDξ†
M (x) (14)

= ξM (x)(i∂ + ÂR(x))ξ†
M (x) − ÂL(x),

−âR(x) ≡ ξ†
M (x)iDξM (x)

= ξ†
M (x)(i∂ + ÂL(x))ξM (x) − ÂR(x)

= ξ†
M (x)âL(x)ξM (x). (15)

They are also covariant under the local chiral symmetry:

âL(x) → GL(x)âL(x)G†
L(x),

âR(x) → GR(x)âR(x)G†
R(x). (16)

In the above, we have defined a set of quantities, but
in the sense of gauge fields, there are only two kinds of in-
dependent quantities: quantities (hatted quantities) trans-
forming according to local chiral symmetry and quantities
(unhatted quantities) transforming according to global chi-
ral symmetry.They are equivalent in expressing gauge fields
since there are only two kinds of gauge fields in our theory.
The differences among them are chiral rotated angles. By
using these gauge fields and pseudoscalar fields, we can con-
struct the chiral, C, P and T invariant Lagrangian which
consists of pseudoscalar mensons, vector mesons and axial-
vector mesons. The Lagrangian, which will be constructed
below, should be invariant under the transformations of
global chiral symmetry U(3)L×U(3)R with the local chiral
symmetry Û(3)L×Û(3)R appearing as a hidden symmetry.

3 The effective Lagrangian of vector,
axial-vector and peusodoscalar mesons

To construct the Lagrangian, we should take quantities
independent from those defined above. By analyzing their
transformation properties, the independent quantities may
be chosen as follows:

aLµ, UaRµU†, ξ̂LâLµξ̂†
L. (17)

They are transforming as A → gLAg†
L, with A denoting

the above three quantities.

Thus the O(p2) Lagrangian can be constructed as fol-
lows:

L2 = L2
a + L2

b + L2
c + L2

d,

L2
a = a Tr

[
aLµ + UaRµU†]2 ,

L2
b = b Tr

[
aLµ − UaRµU†]2 ,

L2
c = c Tr

[
ξ̂LâLµâµ

Lξ̂†
L

]
,

L2
d = d Tr

[
(aLµ − UaRµU†) − ξ̂LâLµξ̂†

L

]2
, (18)

where a, b, c and d are constants and will be fixed later.
When rewriting the Lagrangian in the explicit form of

the chiral angle and the covariant derivative and redefining
the constants a, b, c and d, we have

L2
a = −a(f2

π/16)

× Tr
[
ξ̂LDµξ̂†

L + (ξ̂LξM )(Dµξ̂†
R)ξ̂R(ξ̂LξM )†

]2
,

L2
b = −b(f2

π/16)

× Tr
[
ξ̂LDµξ̂†

L − (ξ̂LξM )(Dµξ̂†
R)ξ̂R(ξ̂LξM )†

]2
,

L2
c = −c(f2

π/16) Tr
[
ξ†
MDµξM

]2
,

L2
d = −d(f2

π/16) Tr
[
ξ̂LDµξ̂†

L + (ξ̂LξM )(Dµξ̂†
R)ξ̂R(ξ̂LξM )†

− ξ̂L(ξMDµξ†
M )ξ̂†

L

]2
, (19)

which are the O(p2) Lagrangians with fπ the decay con-
stant.

To construct the O(p4) Lagrangian, let us define some
quantities by using the above independent quantities and
confirm their parity (P ) properties,

P : a+µ ≡ (aLµ + UaRµU†) → U†a+µU, (20)

P : a−µ ≡ (aLµ − UaRµU†) → −U†a−µU, (21)

P : â−µ ≡ ξ̂LâLµξ̂†
L → −U†â−µU, (22)

P : Vµν ≡ FL
µν + UFR

µνU† → U†VµνU, (23)

P : Aµν ≡ FL
µν − UFR

µνU† → −U†AµνU. (24)

From the above discussions, the O(p4) Lagrangian can
easily be constructed. A complete Lagrangian is presented
in the appendix. Here we focus on L2 and the following
ten relevant important terms

L4 = L4
k + L4

â + L4
F ,

L4
k = − 1

4g2
G

Tr(FLµνFµν
L + FRµνFµν

R )

= − 1
4g2

G

Tr(F̂LµνF̂µν
L + F̂RµνF̂ muν

R ), (25)
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L4
â = α(1/12g2

G) Tr
[
ξ̂L(DµâLν)(Dµâν

L)ξ̂†
L

]
+β(1/12g2

G) Tr
[
ξ̂LâLµâLν âµ

Lâν
Lξ̂†

L

]
+γ(1/12g2

G) Tr
[
(ξ̂LâLµâµ

Lξ̂†
L)2

]
,

L4
F = α1(−i/g2

G) Tr
[
aLµaLνFLµν + aRµaRνFRµν

]
+α2(−i/g2

G)

× Tr
[
UaRµaRνU†FLµν + aLµaLνUFRµνU†]

+α3(+i/2g2
G)

× Tr
[
aLµUaRνU†FLµν + aRµU†aLνUFRµν

]
+ H.c.

+α4(−i/4g2
G)

× Tr
[
ξ̂LâLµâLν ξ̂†

LFLµν + ξ̂Rξ†
M âLµâLνξM ξ̂†

RFRµν
]

+α5(+i/4g2
G)

× Tr
[
aLµξ̂LâLν ξ̂†

LFLµν + aRµξ̂RâRν ξ̂†
RFRµν

]
+ H.c.

+α6(−i/4g2
G)

× Tr
[
UaRµU†ξ̂LâLν ξ̂†

LFLµν

−U†aLµUξ̂RâRν ξ̂†
RFRµν

]
+ H.c. (26)

For comparison, the coupling constants are taken in
terms of the same notation as the one in [10, 15] except
three additional interaction terms of O(p4) which have been
missing in [10,15] and will be found to be very important
for understanding the ρππ coupling gρππ and the decay
rates of a1 → ρπ and a1 → γπ. It is seen that there are
fourteen unknown coupling constants: a, b, c, d, gG, α, β, γ
and αi (i = 1, . . . , 6). In general, they need to be deter-
mined via experimental processes and the success of current
algebra can also fix some of the couplings. It was shown
in [10,15] that the following choice of the parameters seem
to be consistent with the low energy phenomenology and
current algebra:

a = b = c = 2, d = 0, (27)

α1 = α2 = α3 = 0, − α4 = α5 = α6 = 1, (28)

α, β, γ missing, or α = β = γ = 0. (29)

Note that the values of this set of parameters were
phenomenologically suggested including the three terms
α, β and γ. The three additional terms are introduced for
the first time in this paper from hidden local symmetry.
We will discuss their values in the next section in detail.

Since the physics is independent of hidden local sym-
metry, we can choose any appropriate gauges for the local
symmetry to obtain the effective Lagrangian for describ-
ing the low energy dynamics of QCD. For convenience,
we choose the following gauge transformations of GL,R(x)
which are the same as [10],

ξM (x) → GL(x)ξM (x)G†
R = 1, (30)

ξ̂L(x) → ξ̂L(x)G†
L(x) = ξL(x) = ξ(x) = eiΠ(x)/fπ , (31)

ξ̂R(x) → ξ̂R(x)G†
R(x) = ξR(x) = ξ†(x) = e−iΠ(x)/fπ ,

(32)

U(x) = ξL(x)ξ†
R(x) = ξ2(x) = ei2Π(x)/fπ , (33)

where Π(x) = Πaλa is the nonet Goldstone-like pseu-
doscalar. In our convention, fπ = 186 MeV. With this
gauge, we have

âR(x) = −âL = ÂR − ÂL = ξ†
L(−iDU)ξR

= ξ†
R(iDU†)ξL, (34)

where

DU = ∂U + iUaR − iaLU. (35)

It is seen that the above choice of the gauge condition
is a kind of unitary gauge corresponding to the breaking
down of the hidden local chiral symmetry.

It will also be useful to decompose the chiral gauge
fields ÂL and ÂR into two parts:

ÂL(x) = AL + Lξ(x), ÂR(x) = AR + Rξ(x), (36)

where AL(x) and AR(x) are the covariant parts associ-
ated with the gauge bosons aL(x) and aR(x), while Lξ(x)
and Rξ(x) are the pure gauge parts associated with the
Goldstone-like pseudoscalars contained in the non-linear
chiral fields ξ̂L(x) and ξ̂R(x):

AL(x) = ξ†
L(x)aL(x)ξL(x) ≡ V (x) − A(x), (37)

Lξ(x) = ξ†
L(x)i∂ξL(x) ≡ Vξ(x) − Aξ(x), (38)

AR(x) = ξ†
R(x)aR(x)ξR(x) ≡ V (x) + A(x), (39)

Rξ(x) = ξ†
R(x)i∂ξR(x) ≡ Vξ(x) + Aξ(x); (40)

we can explicitly get

2Aξ = ξ†
L(−i∂U)ξR. (41)

In the above gauge, we get the effective Lagrangian
which possesses the global U(3)L × U(3)R symmetry.

The O(p2) Lagrangian becomes

L2 = (a + b)(f2
π/16) Tr

[
a2
Lµ + a2

Rµ

]
+2(a − b)(f2

π/16) Tr
[
aLµUaRµU†]

+c(f2
π/16) Tr

[
DµUDµU†]

+d(f2
π/16) Tr

[
∂µU∂µU†] . (42)

The O(p4) Lagrangian becomes

L4 = L4
k + L4

â + L4
F + . . . ,

L4
k = − 1

4g2
G

Tr(FLµνFµν
L + FRµνFµν

R )
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= − 1
4g2

G

Tr(F̂LµνF̂µν
L + F̂RµνF̂µν

R ), (43)

L4
â = α(1/12g2

G) Tr
[
DµDνUDµDνU†]

+β(1/12g2
G) Tr

[
DµUDνU†DµUDνU†]

+γ(1/12g2
G) Tr

[
DµUDµU†DνUDνU†] ,

L4
F = α1(−i/g2

G) Tr
[
aLµaLνFLµν + aRµaRνFRµν

]
+α2(−i/g2

G)

× Tr
[
aRµaRνU†FLµνU + aLµaLνUFRµνU†]

+α3(+i/2g2
G)

× Tr
[
aLµUaRνU†FLµν + aRµU†aLνUFRµν

]
+ H.c.

+α4(−i/4g2
G) Tr

[
DµUDνU†FLµν + DµU†DνUFRµν

]
+α5(+i/4g2

G)

× Tr
[
aLµiDνUU†FLµν − aRµiDνU†UFRµν

]
+ H.c.

+α6(−i/4g2
G) (44)

× Tr
[
UaRµiDνU†FLµν − U†aLµiDνUFRµν

]
+ H.c.

We will see below that it is this form of effective chiral
Lagrangian that enables us to compare it with the one
derived from the effective chiral theory and the chiral per-
turbation theory. This is because they possess the same
global chiral symmetry Gglobal in the chiral limit. This
then allows us to fix the fourteen parameters in terms of
the two parameters introduced in the effective chiral theory
of mesons in the large Nc approach.

4 Fourteen parameters in chiral Lagrangian
of hidden local symmetry

So far, the effective chiral Lagrangian based on the global
chiral symmetry and local hidden symmetry breaking has
been presented. Considering the appropriate gauge selec-
tion mentioned in the last section, we can fix the fourteen
parameters by comparing them with the ones of chiral per-
turbation theory given in [18]. It is easy to check that the
parameters are fixed to be

a = b =
m2

0

f2
π

=
g2m2

ρ

f2
π

, c =
6g2m2

f2
π

=
F 2

f2
π

, d = 0

α = 2β = −γ =
Nc

2(πg)2
, g2

G =
4
g2 (45)

α1 = α2 = α3 = α5 = α6 = 0, α4 =
Nc

2(πg)2
= α,

with the redefinition

g2 =
1
6

F 2

m2 , (46)

where m and m0 are free parameters.

To define the physical meson states in the mass eigen-
states, one needs to normalize the kinetic terms and redefine
the pseudoscalars and axial-vectors due to the mixing term
aµ(x)∂µπ(x), which leads to

f2
π = F 2

(
1 − 2c

a + b + 2c

)
= F 2

(
1 − 6m2

m2
ρ + 6m2

)
,

m2
ρ = m2

o/g2. (47)

Comparing the above parameters with the one fixed via
the low energy phenomenology, we can get the following
conclusions.
(1) For the terms in the effective Lagrangian up to O(p2),
both effective chiral Lagrangian approach and hidden local
symmetry approach provide a consistent determination of
the four parameters. It is interesting to note that once the
vector mass is dynamically generated and takes the value

m2
ρ = 6m2, (48)

we have from (45) and (47)

F 2 = 2f2
π , a = b = c = 2, (49)

which agree well with the conclusions obtained from the
current algebra and phenomenology analysis in the hidden
symmetry approach [10,15].
(2) From the terms in O(p4), we noticed the following. (i)
There are ten important terms rather than seven terms in
the usual effective Lagrangian of hidden symmetry in [10,
15], three additional new terms (i.e., α, β and γ) are nec-
essary in our present more general construction on effec-
tive Lagrangian via the hidden local symmetry approach.
In particular, these three terms are found to non-zero
when comparing with the effective chiral Lagrangian [18].
(ii) Even for the usual six terms with coupling constants
αi, i = 1, . . . , 6, three of the them, α4, α5 and α6, turn out
to have a different behavior when comparing their values
as obtained from the phenomenological analysis in the lit-
erature [10,15] with the ones determined from the effective
chiral theory [18].
(3) The relation −α4 = α5 = α6 = 1 has been taken in
the literature [10,15] to accommodate the ρ-dominance for
a1 → γπ decay and cancel the strong momentum depen-
dence of the coupling fρππ in the absence of a1-meson.
While in the effective chiral theory, it is seen that α4 is
positive with the value α4 = Nc/(2(πg)2) and α5 = α6 = 0.
(4) It is natural to ask why the values α4, α5 and α6 ex-
tracted from the two cases are so different, and how the
cancellation of a strong momentum dependence of the cou-
pling fρππ and ρ-dominance in a1 → γπ decay can be ac-
commodated in the case with a positive value of α4 and
zero values of α5 and α6. The answer is attributed to three
additional new terms in our present more general construc-
tion from hidden local symmetry approach. They are found
to be non-zero from the effective chiral theory and their
values are determined from the effective chiral theory to
be α = −γ = 2β = α4 = Nc/(2(πg)2). With these values,
it can be shown that the strong momentum dependence of
fρππ will be cancelled when m2

ρ = 6m2 and g = 1/π due to
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the existence of additional new terms, and the ρ-dominance
for a1 → γπ decay can also be realized [18].
(5) In comparison with the chiral perturbation theory
(ChPT) [2], the new terms α, β and γ are related to the
terms L1, L2 and L3 in ChPT. Noticing the algebraic re-
lation

Tr(DµUDνU†DµUDνU†)

=
1
2

[
Tr(DµUDµU†)

]2
+ Tr(DµUDνU†) · Tr(DµUDνU†)

−2 Tr(DµUDµU†)2, (50)

we get the relation L1 = 1/2L2. According to (50) and (58),
we can express L1, L2 and L3 in terms of α, β and γ as

L1 =
β

2
1

12g2
G

, L2 = β
1

12g2
G

, (51)

L3 = (α − 2β + γ)
1

12g2
G

, L9 = (3α4 − α)
1

12g2
G

.

(6) The terms α4 and α are related to the coupling constants
L9 in ChPT. Both the sign and extracted value for α4 in our
present considerations are consistent with the ones of L9
from the phenomenology well described by ChPT, while the
previous results for α4 given in the literature [10,15] seem
to be in conflict with the extracted value of L9 in ChPT.

It is then not difficult to show that the more general
effective Lagrangian constructed via the approach of global
chiral symmetry and hidden local chiral symmetry with an
appropriate gauge choice should be consistent with any
other effective chiral Lagrangian in the chiral limit. The
fourteen parameters in the effective Lagrangian up to O(p4)
of the mesons fields can be extracted from the effective
chiral theory.

5 Effective chiral Lagrangian
and low energy behavior

A consistent effective Lagrangian should reproduce the
low energy phenomenologies which have been tested by
experiments. Now, let us check the vector–pseudoscalar–
pseudoscalar vertex. As an example, we may first work out
the ρππ coupling fρππ which is defined as

Lρππ = fρππεijkρµ
i πj∂µπk. (52)

From the general Lagrangian (42) and (44), it is easy
to get

fρππ = gG

{
1 +

2m2
ρ

g2
Gf2

π

[
(α4 − α/3)

(
1 − 2c

a + b + 2c

)2

−
(

2c

a + b + 2c

)2

(53)

+(α5 + α6)
(

2c

a + b + 2c

) (
1 − 2c

a + b + 2c

)]}
;

from the above expression we can see that there is a contri-
bution from α. It is seen that when the parameters take the
values chosen from the phenomenological analysis in [10,15]
, i.e., a = b = c = 2,−α4 = α5 = α6 = 1 andα = 0, one has

fρππ = gG = 2/g, (54)

where the second term in the curled brackets of (53) van-
ishes due to cancellations from various contributions. Al-
ternatively, we can take other choices, such as the values
in [18]. As a consequence, we have

fρππ =
2
g

{
1 +

m2
ρ

2π2f2
π

[
Nc

3

(
1 − 6m2

m2
ρ + 6m2

)2

− π2g2
(

6m2

m2
ρ + 6m2

)2
]}

. (55)

It is seen that only for the specific choice g = 1/π,
m2

ρ = 6m2 and Nc = 3, we get fρππ = 2/g. It can be shown
that with the parameters fixed from the effective chiral
theory, the effective chiral Lagrangian can also lead to a
consistent prediction on Γ (a1 → ρπ) and Γ (a1 → γπ). The
numerical results were found to be Γ (a1 → ρπ) � 326 MeV
and Γ (a1 → γπ) � 252 keV. In general, the value of the
basic parameter g close to 1/π is found to be a consistent
one. Here the term α plays an important role.

The second effect of the additional term α in the more
general effective chiral Lagrangian is that Weinberg’s sum
rule g2

a = g2
ρ will be modified to be

g2
a = g2

ρ

(
1 − α

3

)
= g2

ρ

(
1 − Nc

6π2g2

)
, (56)

where ga and gρ were defined in [18]. In the second equa-
tion, the parameter α has been taken as the result fixed
from the effective chiral theory. This modification makes
the predictions for the masses of the axial-vectors more
consistent with the experimental data.

The third important effect from the additional term α is
the evaluation for the decay constants of the pseudoscalars.

To be more explicit, we may use some algebraic relations
and the equation of motion

Dµ(U†DµU) =
1
2

(U†χ − χ†U) − 1
6

Tr(U†χ − χ†U)(57)

to reexpress the α term into several more familiar terms,
so that its effect can be easily seen. It is easy to check that

DµDνUDµDνU† =
1
2

[
F 2

L + F 2
R − 2FLUFRU†]

+i
[
DµUDνU†Fµν

L + DµU†DνUFµν
R

]
+(DµUDµU†)(DνUDνU†)

+
1
2

DµUDµ
[
U†(Uχ† − χ†U†)

]
+

1
2

(DµU†DµU)
[
U†χ − χ†U)

]
+total derivative terms or trace terms. (58)
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Table 1. The couplings L1, L2, L3 and L9

Parameters 103L1 103L2 103L3 103L9

Present 0.79 1.58 −3.16 6.32
ChPT [5] 0.4 ± 0.3 1.35 ± 0.3 −3.5 ± 1.1 6.9 ± 0.7

From the explicit form, it is not difficult to understand its
effects. Where the first term modifies Weinberg’s sum rule,
the second term contributes to the ρππ coupling and the
coupling constant L9 in ChPT, the third term has effects
on the coupling constant L3 in ChPT and the last two
terms will provide additional contributions to the decay
constants of psuedoscalars. As a consequence, we arrive at
a complete prediction for the coupling L1, L2, L3 and L9 at
this order, which is consistent with the ones extracted from
phenomenology described by the chiral perturbation theory
up to O(p4). The numerical values are found to be the ones
in Table 1. Now, let us check the known KSFR relation.
From the general effective Lagrangian, the mass of the ρ-
meson is expressed as m2

ρ = af2
πg2

G/4. Comparing with the
effective chiral theory with g2

G = 4/g2 and fρππ � 2/g,
one has

m2
ρ = af2

πg2
G/4 =

a

4
f2

π

(
2
g

)2

� a

4
f2

πf2
ρππ. (59)

Thus the known KSFR relation holds for a � 2 which is
also consistent with vector meson dominance.

It is seen that themore general effectiveLagrangianwith
its parameters extracted from the effective chiral theory
can well reproduce the phenomenologies of the ρ–π system.

The fourth effect of the new terms is the important
contribution to the π–π scattering [2, 17,18].

One may see that only from the ρππ coupling, a1 → ρπ
and a1 → γπ decays, the parameters appearing in O(p4) in
the effective chiral Lagrangian constructed from the hid-
den local symmetry approach may not uniquely be deter-
mined. The value of the parameter α4 extracted from the
phenomenology of the ρ–a1 system in the literature [10,15]
is in conflict with the one from the phenomenology well
described by the chiral perturbation theory and effective
chiral theory. While the resulting structure and couplings
from the effective chiral theory are consistent not only with
the phenomenology of the ρ–a1 system, but also with the
chiral perturbation theory. Thus, the effective chiral theory
derived from the chiral quarks and bound state solutions
of non-perturbative QCD may provide a very useful way
to extract all the parameters in terms of only two basic
scales, m and fπ = 186 MeV (or coupling constant g). It is
likely that the structure of the effective chiral Lagrangians
for the O(p4) given in the literature [10,15] is incomplete.
As a consequence, the extracted coupling constants are
not reliable.

6 Conclusions

The more general effective chiral Lagrangian of mesons
(pseudoscalars, vectors and axial-vectors) has been con-
structed in the chiral limit by using explicit global chiral

symmetry U(3)L × U(3)R and hidden local chiral symme-
try Û(3)L × Û(3)R. It is shown that there are many extra
terms in addition to the eleven terms given in [10]. Among
these extra terms there are three important terms that have
been found to play important roles in understanding the
vector meson dominance and the π–π scattering, in pro-
viding consistent predictions on the decay rates of a1 → ρπ
and a1 → γπ, as well as in resulting in an effective chiral
Lagrangian consistent with the chiral perturbation theory.

It is observed that not only the three new interactional
terms introduced in this paper are necessary, but also the
resulting coupling constants for the other three interacting
terms have total different values in comparison with the
ones given in the literature from the hidden symmetry
approach to O(p2). It is likely that the structure of the
effective Lagrangian to O(p4) given in the literature [10]
is incomplete; thus the extracted coupling constants are
not reliable.
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A The full Lagrangian to O(p4)

In general, the O(p4) Lagrangian has two forms, corre-
sponding to one trace operator terms and two trace oper-
ator terms. One trace operator terms are constructed by
basic blocks while two trace operator terms are constructed
by two O(p2) terms. As the two trace terms corresponding
to higher order contributions, we will not consider those
terms. For convenience, we construct the O(p4) Lagrangian
from the parity properties of the independent fields. We
have
(i) terms independent of â−,

(
â−µ ≡ ξ̂LâLµξ̂†

L

)
:

L4
a = a1 Tr

[
(aµ−aµ

−)2
]
+ a2 Tr

[
aµ−aν−aµ

−aν
−

]
+ a3 Tr

[
(aµ+aµ

+)2
]
+ a4 Tr

[
aµ+aν+aµ

+aν
+
]

+ a5 Tr
[
aµ−aµ

−aν+aν
+
]
+ a6 Tr

[
aµ−aν−aµ

+aν
+
]

+ a7 Tr
[
aµ−aν−aν

+aµ
+
]
+ a8{Tr

[
aµ−aµ

+aν−aν
+
]

+ Tr
[
aµ+aµ

−aν+aν
−

]} + a9 Tr
[
aµ−aν+aµ

−aν
+
]
; (60)

(ii) terms that depend on â−:

L4
â = â1 Tr

[
aµ−aν−aµ

−âν
−

]
+ â2 Tr

[
aµ−aµ

−aν−âν
−

]
+ â3 Tr

[
aν−aµ−aµ

−âν
−

]
+ â4 Tr

[
aµ−aν−âµ

−âν
−

]
+ â5 Tr

[
aµ−aµ

−â−ν âν
−

]
+ â6 Tr

[
aµ−aν−âν

−âµ
−

]
+ â7 Tr

[
aµ−âµ

−aν−âν
−

]
+ â8 Tr

[
aµ−â−νaµ

−âν
−

]
+ â9 Tr

[
aµ−âν

−aν−âµ
−

]
+ â10 Tr

[
aµ−â−ν âµ

−âν
−

]
+ â11 Tr

[
aµ−âµ

−â−ν âν
−

]
+ â12 Tr

[
aµ−â−ν âν

−âµ
−

]
+ â13 Tr

[
aµ+aν+âµ

−âν
−

]
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+ â14 Tr
[
aµ+aµ

+â−ν âν
−

]
+ â15 Tr

[
aµ+aν+âν

−âµ
−

]
+ â16 Tr

[
aµ+â−νaµ

+âν
−

]
+ â17 Tr

[
aµ+âµ

−aν+âν
−

]
+ â18 Tr

[
aµ+â−νaν

+hµ
]
+ â19 Tr

[
â−µaµ

−aν+aν
+
]

+ â20 Tr
[
â−µaν−aµ

+aν
+
]
+ â21 Tr

[
â−µaν

−aν+aµ
+
]

+ â22 Tr
[
aµ−hµaν+aν

+
]
+ â23 Tr

[
aµ−â−νaν

+aµ
+
]

+ â24 Tr[aµ−â−νaµ
+aν

+ + â25 Tr
[
aµ−aν+âµ

−aν
+
]

+ â26 Tr
[
aµ−aν

+â−νaµ
+
]
+ â27 Tr

[
aµ−aµ

+â−νaν
+
]

+ â28 Tr
[
â−µâ−ν âµ

−âν
−

]
+ â29 Tr

[
(â−µâµ

−)2
]
; (61)

(iii) terms that depend on Vµν and Aµν :

L4
F = α1(−i/g2

G) Tr
[
aLµaLνFLµν + aRµaRνFRµν

]
+ α2(−i/g2

G)

× Tr
[
UaRµaRνU†FLµν + aLµaLνUFRµνU†]

+ α3(i/2g2
G)

× Tr
[
aLµUaRνU†FLµν + aRµU†aLνUFRµν

]
+ H.c.

+ α4(−i/4g2
G)

× Tr
[
ξ̂LâLµâLν ξ̂†

LFLµν + ξ̂Rξ†
M âLµâLνξM ξ̂†

RFRµν
]

+ α5(+i/4g2
G)

× Tr
[
aLµξ̂LâLν ξ̂†

LFLµν + aRµξ̂RâRν ξ̂†
RFRµν

]
+ H.c.

+ α6(−i/4g2
G)

× Tr
[
UaRµU†ξ̂LâLν ξ̂†

LFLµν

+ U†aLµUξ̂RâRν ξ̂†
RFRµν

]
+ H.c. (62)

After taking the unitary gauge used in this context, the
final Lagrangian can be easily written down, but we shall
not list the full results here.
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